一点一点前进...

0%

天才导引的历程 数学中的伟大定理 | 邓纳姆 (William Dunham)

历时好几个周末的时间,于上周末把这本书读完了。现在把自序复制过来,中间穿插自己的一点想法,作为读完此书的总结。
接下来,把上次买的《活出生命的意义》看完,给自己来点鸡汤,思考下人生。

伯特兰·罗素在他的自传中回忆了他青少年时期的一场危机:
有一条小路,穿过田野,通向新南盖特,我经常独自一人去那里观看日落,想象着自杀。然而,我最终没有自杀,因为我希望了解更多的数学知识。
Leo:确实,数学有他自身的美,数千年来,吸引着无数人。
诚然,只有极少数人能够如此虔诚地皈依数学,然而有许多人能够领会数学的力量,特别是领会数学之美。本书谨献给那些希望更深入地探索漫长而辉煌的数学史的人们。
Leo:大多数人都是普通人,但是,他们往往也能体会到数学带来的美感。
对于文学、音乐和美术等各种学科,人们的传统做法是以考证杰作——“伟大的小说”、“伟大的交响乐”、“伟大的绘画”——作为最恰当和最有启发性的研究对象。人们就这些主题著书立说,授课讲学,使我们能够了解这些学科中颇具创新意识的里程碑和创造这些里程碑的伟人。
本书采用类似的方法来研究数学,只不过书中大师们创造的不是小说或交响乐,而是定理。因此,本书不是一本典型的数学教材,没有一步一步地推导某个数学分支的发展。本书也不强调数学在确定行星运行轨道、理解计算机世界或者结算支票等方面的应用。当然,数学在这些应用领域极其成功。然而,并不是这些世俗功利促使欧几里得、阿基米德或乔治·康托尔为数学殚精竭虑,终生不悔。他们觉得没有必要借功利目的为自己的工作辩解,正如莎士比亚不必解释他为何要写十四行诗而没有写食谱,或者凡高为何要画油画而没有画广告画一样。
Leo:正是这些伟大的天才,给我们留下了这么多宝贵的东西,让我们这些普通人去体会数学之美。
Leo:正是因为这本书不是教材,不用拘泥于很多限制,使用了很生动有趣的方式一步一步的推进,做到了如此引人入胜的程度。
在本书中,我将从数学史的角度来探究一小部分最重要的证明和最精巧的逻辑推理,并重点阐述这些定理为什么意义深远,以及数学家们是如何彻底地解决了这些迫切的逻辑问题的。本书的每一章都包含三个基本组成部分。
第一部分是历史背景。本书中的“伟大定理”跨越了2300多年的人类历史。在讨论某个定理之前,我都将先介绍历史背景,介绍当时的数学状况乃至整个世界的总体状况。像其他任何事物一样,数学也是在一定的历史环境中产生的。因此,指明卡尔达诺三次方程的解法出现在哥白尼日心说公布后两年和英格兰国王亨利八世死前两年是有意义的,强调青年学者艾萨克·牛顿1661年进入剑桥大学学习时,王政复辟对剑桥大学的影响也是有意义的。
Leo:这部分说了很多故事,要是再添加一些名人轶事就更好了。
第二部分是人物传记。数学是有血有肉的实实在在的人的造物,而数学家的生平则可能给人以灵感、示人以悲剧或令人惊呼怪诞。本书所涉及的定理体现了许多数学家的勤奋努力,从交游广阔的莱昂哈德·欧拉到生性好斗的约翰·伯努利,以及最世俗的文艺复兴时期的人物杰罗拉莫·卡尔达诺,不一而足。了解这些数学家的不同经历,有助于我们更好地理解他们的工作成果。
第三部分,即本书的重点,是在这些“数学杰作”中所表现出的创造性。不读名著,无从理解;不观名画,无从体味。同样,如果不去认真地、一步一步地钻研这些证明方法,也不可能真正掌握这些伟大的数学定理。而要理解这些定理,就必须全神贯注,加倍努力。本书各章仅仅为理解这些定理梳理线索。
Leo:其实,按理说,我的数学储备应该可以推理出本书的这些定理,但是由于个人原因,数论、集合中有些东西,只是草草的看了个大概,木有深入研究,惭愧。
Leo:这本书的连贯性很好,每章后有个后记,大致会从本章的重点人物的时间点讲到下一个主要人物出现前。
这些数学的里程碑还具有一种永世不灭的恒久性。在其他学科,今天流行的时尚,往往明天就被人遗忘。一百多年前,沃尔特·司各特爵士还是当时英国文学界中最受尊重的作家之一,而今天,人们对他已淡忘。20世纪,超级明星们匆匆来去,转瞬即成历史,而那些旨在改变世界的观念,最终却常常变成思想垃圾。
的确,数学的口味时常也会改变。但是,严格遵循逻辑的限定条件而得到完美证明的数学定理则是永恒的。公元前300年欧几里得对毕达哥拉斯定理的证明,丝毫未因时光的流逝而丧失它的美与活力。相比之下,古希腊时期的天文学理论或医术却早已变成陈旧而有点可笑的原始科学了。19世纪的数学家赫尔曼·汉克尔说得好:
就大多数学科而言,一代人摧毁的正是另一代人所建造的,而他们所建立的也必将为另一代人所破坏。只有数学不同,每一代人都是在旧的建筑物上加进新的一层。
从这一点来看,当我们探讨伟大数学家历久弥新的成果时,就能够逐渐体会奥利弗·亥维赛精辟的论说:“逻辑能够很有耐性,因为它是永恒的。”
Leo:这个计算机软件这个领域差不多,新技术层出不穷,但是本质的东西是不变的,是根基,是值得人们慢慢体会,反复体会的。
在选择最能体现数学精髓的这些定理时,我考虑了许多方面的因素。如前所述,我首要考虑的是找到具有深刻见解或独创性的论题。当然,这里有一个个人好恶的问题,我承认,不同的作者肯定会选取不同的定理。除此之外,能够直接看到数学家通过巧妙的演绎,将看似深奥的问题变得清晰易懂,确实是一种不同寻常的经历。据说,聪明人能够战胜困难,而天才则能够战胜不可能。显而易见,本书将呈现许多天才。这里有真正的经典——数学界的《蒙娜丽莎》或《哈姆雷特》。
Leo:个人觉得,作者选的挺好的,大多数普通人都是数学界的白痴,而作者是数学家,眼界、深度都比我们强多了,这也决定了他能选出更好的(概率上是这样的)。
当然,选择这些定理也有其他方面的考虑。首先,我希望本书能够包含历史上主要数学家的定理。例如,欧几里得、阿基米德、牛顿和欧拉必不可少。忽略这些数学人物,犹如研究美术史而不提伦勃朗或塞尚的作品一样。
Leo:NB的人太多,以至于高斯这样的人物只能出现在欧拉章节的后记部分。
其次,为求丰富多彩,我兼顾了数学的各个分支。书中的命题来自平面几何、代数、数论、分析学和集合论等各个领域。各种分支,以及它们之间的偶然联系和相互影响,为本书增添了一些新鲜的气息。
Leo:这个想法很好,作者指出很多类似于代数和几何的关联这种小的亮点。
我还希望能在本书中展示重要的数学定理,而不仅仅是一些小巧的智力题。实际上,本书的大部分定理或者解决了长期存在的数学问题,或者提出了意义深远的问题留待未来解决,或者二者兼而有之。每一章的结尾处都有后记,一般都会论证一个由该伟大定理提出的问题,同时会介绍其在数学史上的影响。
现在再跟大家说一说难度深浅的问题。显然,数学有许多伟大的里程碑,其深度和难度只有专家可以理解,而所有其他人都会感到莫测高深。在一本针对一般读者的书中引入这些定理是十分愚蠢的。只要具备高中代数和几何知识即可理解本书所论述的定理。但有两处例外,一是第9章在讨论欧拉的工作成果时应用了三角学中的正弦曲线,二是第7章在讨论牛顿的工作成果时应用了初等微积分。许多读者可能已经掌握了这些知识,而对于那些尚未掌握这些知识的读者,本书做了一些解释,以帮助他们克服阅读中的困难。
Leo:这是一本科普书,出现了很多很深的定理,但是作者都是在历史背景、传记或者后记里面讲一讲,主定理还是浅显易懂的,至少我是能够完全理解。
必须强调,本书不是一本学术著作。一些重大的数学问题或微妙的历史问题当然不可能在这种书中一一述及。虽然我尽力避免编入一些错误的或历史上不准确的材料,但这里也不是对所有问题的所有方面刨根问底的时间和场合。毕竟,本书是一本大众读物,不是科学著作或新闻报道。
就此,我必须对定理证明的真实性说几句。在准备写这本书的时候,我发现,为了让现代读者能够理解这些数学资料,我不得不对定理创始人最初使用的符号、术语和逻辑战略做一些变通。完全照搬原作会使一些定理非常难于理解,但严重偏离原作又与我的历史目标相冲突。总之,我尽力保留了定理原作的全部要旨和大量细节。我所作的修改并不严重,在我看来,不过就像是用现代乐器演奏莫扎特的乐曲一样。
因此,我们即将开始两千年的数学里程之旅。这些定理虽然古老,但在历经许多个世纪之后,却依旧保持着一种新鲜感,依旧能展现古人的精湛技艺。我希望读者能够理解这些证明,并能够领会这些定理的伟大之处。对于达到这一境界的读者,我希望他们不仅会对他人的伟大之处肃然起敬,还会因为能够理解大师著作而增加成就感。
Leo:伟大的数学之旅结束了,想动脑的可以读一读,想看故事的可以读一读,想增加对数学兴趣的朋友更要读一读了。